Collaboratory for Multi-Scale Chemical Science

Software Engineering Plan

Purpose

This plan describes the software engineering approach that will be used by the Collaboratory for Multi-Scale Chemical Science (CMCS) team for the purpose of defining and constructing CMCS software. This approach describes each phase of the software life cycle, from requirements analysis to administration and maintenance of deployed software, and provides an explanation of the typical activities and resultant work products of each phase.

The intent of this plan is to provide an outline of the development process that the CMCS team will follow for all development activities, but avoids prescribing the exact work products that will be produced and the content and format of these work products. It is also the intent of this plan to be flexible so work products can be tailored per individual task to the degree necessary. For example, a requirements document for an infrastructure component may require more analysis, documentation and review than a requirements document for a CMCS application since several other system components (application and infrastructure) will depend on the proper operation of the infrastructure component. Decisions about the activities performed, the work products produced and their respective content and format will be made by the CMCS team during the project lifetime. This plan also outlines the roles and responsibilities of the development team members, extends the decision-making process defined by the project (if necessary), and provides a set of risks identified with the development of the CMCS.

Approach

The CMCS software will be developed over a three-year period using an iterative development approach. Each iteration will revisit the phases of the development process outlined in this document and will incrementally define, architect, and add functionality to the CMCS software.

The CMCS Project leadership will define an overall timeline for the project. The CMCS Chief Technical Officer (CTO) and CMCS Chief Integration Officer (CIO) will develop an overall schedule for the software development activities that fit into this timeline. Task leads and software engineers will be responsible for providing time estimates for their tasks to help define a CMCS development schedule.

The issue of CMCS software being developed as open source is being addressed at the SciDAC program level.

Intended Audience

This document is intended only for internal CMCS project use, it is not intended for public distribution.

Relationship to Other Documents

This document is to be used for the purpose of developing software for the CMCS project. This document is not intended to serve as the Project Management Plan for CMCS, that is a separate document and where overlap in content exists between these documents, this document will be modified to address the overlap and resolve conflicting statements. This document supercedes a preliminary draft entitled “Software LifeCycle and Implementation Strategy” that was sent out via email on July 11, 2001.

Decision Making

The Project Management Plan will define an overall decision-making process for the CMCS project. If necessary, additional details will be added here to extend this process for our purposes.

Roles and Responsibilities

This section defines team member roles and their associated responsibilities with respect to performing software engineering and development tasks.

Administrator – A CMCS team member responsible for maintaining operational CMCS hardware, software and services and responding to user requests.

Application Scientist – A CMCS team member responsible for developing scientific application software (e.g. GRIMECH, Active Tables, NWChem). Responsible for time estimation and delivery of assigned tasks.

Computational Scientist – A CMCS team member that possess an in-depth understanding of the domain science as well as the development of computational intensive software that can efficiently run on a variety of high-performance computing systems. Is typically involved in the development of scientific application software. Responsible for time estimation and delivery of assigned tasks.

Configuration Manager (CM) – Is primarily responsible for initiating, overseeing, and performing the activities outlined in the “Configuration Management Tasks” section. These CM tasks will provide the standardized environments, development tools, templates and plans necessary to successfully implement this Software Engineering Plan and deploy CMCS software.
Software Engineer – A CMCS team member working on tasks to define, architect, or construct CMCS software components. Responsible for time estimation and delivery of assigned tasks.

System Engineer – A CMCS team member working on tasks to build underlying system infrastructure to support software engineering tasks, e.g. server installation, data store architecture, etc. Responsible for time estimation and delivery of assigned tasks.

Task Group – see the Project Management Plan
Task Lead –Directs the development effort of a task and ensures the CMCS software engineering approach is followed. They are responsible for defining the schedule for the task and for delivering the work product(s). Team members can volunteer to fill task lead positions or if necessary they will be assigned by a joint decision between the CTO and CIO, see the Project Management Plan for additional information.

User – A CMCS team member and member of the scientific community that contributes to the definition of user and application interface requirements for CMCS software by articulating how they will perform multi-scale research, what expectations they have when they interact with one another and with the system, and the data that is shared or generated when these interactions occur. Users will work with the development team throughout the CMCS software development process to review development products and refine requirements.

Working Group – see the Project Management Plan.

Working Group Lead – see the Project Management Plan.

Risks
This section outlines several risks identified by the project team regarding the development of the CMCS. Our focus during the requirements and design phases should be to perform activities that minimize these risks. Ultimately, it is the responsibility of each CMCS team member to voice his or her concern if some risk has not been adequately addressed.

· Requirements Risks

· We will proceed with developing/purchasing actual pieces of the CMCS before we have a reasonable understanding of what we are building.

· We may not take the time to perform prototyping in areas where requirements are not well understood in order to satisfy short-term development goals.

· We may spend too much time on requirements and analysis and some software engineers and application scientists may lose interest, impacting our ability to deliver useful software to the user community.

· We won’t discover important requirements until after related decisions have been made.

· We will develop a system too complex to use (e.g. if access to a database is complex, application scientists will just call or email the database custodian for the required information).

· We won’t understand CMCS requirements well enough to properly estimate scope leading to inaccurate scheduling (time and level of effort) estimates

· Technology Risks

· We are too dependent on other projects that are being concurrently developed. Delays in their schedule may have a significant impact on the build schedules planned for CMCS.

· We won't understand the requirements well enough to adequately identify and assess relevant technologies.

· We rely on too many technology breakthroughs for success (more than 2).

· Skills Risks

· We don't have the correct percentage of software engineers on the project once the project starts design and development activities.

· The current software engineers don't have the correct percentage of their time committed to CMCS.

· With the technical nature of the staff, sufficient time will not be devoted to outreach and visibility tasks.

· We are a highly distributed team involving several institutions and disciplines and barriers to accomplishing work on this large-scale will need to be identified and overcome.

· Political Risks

· Competition between overlapping applications for recognition and follow on funding will keep us from operating as a team and achieving our CMCS goals.

· The team doesn’t have a clear and consistent view of the end result of this project. Is it to build a production system or to do research and create innovative mechanisms that enable scientific collaboration demonstrated through a pilot system?

· Inadequate attention will be given to configuration management tasks.

· DOE directives may change to support commercial solutions verses open source.

Development Cycle

The development cycle defined within this section is derived from the development cycle described in PNNL’s Software Systems Engineering Process (SSEP). The SSEP is based upon the requirements of the Carnegie Mellon Capability Maturity Model (CMM) Level 3 where the software process for both management and engineering activities are documented, standardized, and integrated into a standard set of tasks that are used across all institutions. We tailored the SSEP development cycle to better fit the needs of the CMCS by providing more flexibility in the documentation required, and to make design a distinct step in the development cycle. Our application of this development cycle will provide a structured approach for developing software that will improve our ability to manage risk and uncertainty and to develop quality products on schedule and within budget. It will also help address many of the common problems that can cause software projects to fail, including:

· poorly understood project scope and requirements

· little or no ability to adapt the system to changes in requirements and technology over time

· lack of effective team communication based on a commonly understood system architecture and development process

The proposed CMCS software life cycle consists of the five overlapping phases included in Figure 1.

[image: image1.wmf]Requirements Gathering and Analysis

Design

Development

Testing

Deployment

Figure 1: Depicts each phase of the CMCS software engineering life cycle.

As depicted in the figure, software development is not a linear process; activities for one phase will overlap with activities in adjacent phases. In fact, we should expect activities in several of these phases to be performed concurrently. Additionally, the top to bottom ordering of the phases does not imply that the information flow will only be in this direction. Information collected in one phase will be used primarily as input to later phases, but it will also be used to refine the results from earlier phases. Since CMCS will use an iterative model for software development, each of these phases will be revisited several times as part of the CMCS development process and the work products will be revised to reflect the new information gathered from the previous iteration.

Figure 2 provides a summary of the work products produced by each phase of the development cycle. These phases and work products are discussed in more detail in the sections that follow.

The first iteration of this process will help clarify both the project scope and the three-year development plan that will guide CMCS development activities (initial version is in the proposal). This will require a significant upfront effort to identify, understand and document requirements and develop a high-level architecture that will satisfy these requirements. The development plan will be broken down into development cycles that will iteratively add functionality to the CMCS system. At the beginning of a development cycle the requirements and design documentation will be revised and an updated development plan will be provided.

	Requirements Gathering and Analysis
	Use cases, process flows, data definitions, white paper technology investigations, prototypes, domain scientist interviews, CMCS software requirements specification

	Design
	Software design template, architecture diagrams and descriptions, and software design documents

	Development
	Development environment, development plans, schedules, software modules, unit testing software, programming interface documentation, and inline documentation

	Testing
	Deployable software, test procedures and test plans, test results, and system testing environment

	Deployment
	Deployment plan, deployment environment, production software, version description, user documentation

Figure 2: Depicts the products generated by each phase of the software engineering life cycle.

Requirements Gathering and Analysis

[image: image2.wmf]User Needs

User Expectations

User/System Interactions

Dependencies

Limiting Factors

Ways to collect and analyze:

Ÿ

Use Cases

Ÿ

Process Flows

Ÿ

Data Definitions

Ÿ

Prototypes

Ÿ

Technology Assessements

Ÿ

Interviews

Requirements Specification:

Ÿ

Functional Requirements

Ÿ

Data Requirements

Ÿ

Interface Requirements

Between Functions

Figure 3: Example process for requirements gathering and analysis phase.

Users must articulate how they will perform multi-scale research, what expectations they have when they interact with one another and with the system, and the data that is shared or generated when these interactions occur. To gather these requirements we will employ the use of several analysis tools. These include, but are not limited to use cases, process flows, interviews with domain scientists, and data definition tasks. Interviews will be particularly useful when understanding use cases, and evaluating currently deployed software for additional requirements. For each of these activities, a concrete outcome must be defined, produced and made available to the project team.

Prototyping specific functionality and technologies may also be performed during this phase to further understand vague requirements and assess how well a technology can address CMCS requirements. Prototyping the use of a particular technology within CMCS will help mitigate the risk of choosing a particular technology.

Once requirements have been identified through these various activities they will be organized and documented for review and use by the task team. The result of this effort will be a technical document called a software requirements specification. Distinct requirements documents will be created for each CMCS subsystem or component. Task teams will decide the acceptable level of content for their document, and should ensure all specified requirements are testable. The requirements documents, as well as the documented use cases, process flows, and data definition tasks will be made available from the CMCS development website.

Design

[image: image3.wmf]Requirements Specifications

Prototypes

Example Design Work:

Ÿ

Modeling

Ÿ

Component Design

Ÿ

User Interface Design

Ÿ

Protocols and Messaging

Ÿ

System Specifications

Design Document:

Ÿ

Component Descriptions

Ÿ

Technology Dependencies

Ÿ

Data Models

Figure 4: Example process for design phase.

Design will identify components, technologies, interface descriptions (user and programmatic), protocols, data models, etc. that satisfy the requirements documented for CMCS. Product evaluation and selection are also performed during this phase. We expect that the results of these various design efforts will be captured in several informal design documents and system architecture documents that focus on specific CMCS functionality (e.g. events, data store architecture, etc.). Several task teams will be formed to design different aspects of CMCS. The lead of each of these design task teams will be responsible for completing the design document, determining the appropriate content and making it available from the CMCS development website. Task teams will be responsible for understanding task dependencies and properly addressing integration issues within their design.

Ideas for potential design documents include:

· Portal architecture - define portal layers, internal services, interfaces (user/programmatic)

· CMCS Infrastructure Services - define the different services, provide a service interaction diagram (each service will likely have its own design document)

· Definition of CMCS messages (including events)

· Technology assessments for each service or for communications with services

· Assessment of applicable standards to CMCS

· Data flow diagrams/Event diagrams

· Define application interfaces to system services

· Define portal interfaces to system services

· Security architecture

Development

[image: image4.wmf]Design Specifications

Development Plan

Development Environment

Schedules

Software Development

Test ready software

Inline documentation

interface descriptions

Unit test software

Figure 5: Example process for development phase.
Within the CMCS proposal a high-level development plan is provided that serves as the basis for scheduling development activities over the first three years of the CMCS project. Using the information gathered from requirements analysis, design, and prototyping activities, a more detailed development plan will be provided that will focus our activities for each iteration through the development phase. Currently, the CMCS project timeline shows there will be two development cycles per year (essentially March and October of each development year). The CMCS development team can propose more frequent development cycles per year, but there will be no less than two per year. Minor releases of the software and upgrades of the operating system can also be proposed by the development team and will be scheduled as agreed upon by the CTO and CIO during the lifetime of the CMCS project.

Activities for the current development cycle will be more detailed than the activities that are scheduled for future development cycles. At the beginning of each development cycle an updated overall development plan and a detailed plan for the current iteration will be developed and made available to the CMCS team via the CMCS development website.

The development plan identifies the functionality that will be provided for the next iteration of development in sufficient detail that assignments, time estimates and schedules can be developed. The CTO, CIO and assigned task leads are responsible for identifying and documenting the targeted functionality for each iteration of the development cycle. The format and style of the development plan will evolve, as necessary, over the project lifetime.

To facilitate development activities, a development environment will be established that provides a standard CMCS development tree, CMCS source code archive, source code control software, tools for compiling and linking software, automated builds, and the necessary CMCS services and infrastructure configuration to allow unit testing by developers. Development platforms and programming languages will also be determined during this phase. Software engineers will provide in-line documentation for software developed for CMCS and will also provide programming interface descriptions for all developed software. Depending on the language used, the interface descriptions can be automatically generated using a tool like JavaDoc. Standard documentation templates need to be proposed and agreed upon by the CMCS development team. This activity is further addressed in the Configuration Management Tasks section of this document.

While software is being developed, each software engineer is responsible for writing and documenting unit test software and performing integration activities, including integration testing.

Testing

[image: image5.wmf]Unit-tested Software

Test Plan and Procedures

Testing Environment

System Testing

Deployment ready software

Software Problem Reports

Figure 6: Example process for testing phase.

All software planned for release during a build cycle will undergo system testing. The CMCS project team must decide upon the amount of resources that will be devoted to system testing and document those decisions in a CMCS test plan. The test plan will address topics like:

· How long does a system test cycle last?

· How many build-test-fix iterations will we use prior to the release of CMCS software?

· Who tests the software?

· Will test procedures be developed and used for testing?

· How are software problem reports tracked and managed?

Deployment

[image: image6.wmf]System-tested Software

Deployment Plan

Deployment Environment

Software Installation

Software Distribution

Deployment ready software

Software Problem Reports

Figure 7: Example process for deployment phase.

When software is tested and ready for deployment, the CM will coordinate with CMCS management to rollout the new software release. A version description document for the software will be prepared by the CM and will be made available from the CMCS website. Architecture decisions will need to be addressed regarding where the CMCS portal resides, as well as the location of infrastructure services and distributed data repositories. This information should all be captured in a CMCS deployment plan.

Once deployed there will be administration and maintenance issues regarding the operation of CMCS. Keeping the CMCS services running, assisting CMCS users, performing upgrades and patches to the services will require CMCS resources. These issues will need to be addressed in the deployment plan and agreed upon by the CMCS team.

User documentation explaining how to use the CMCS software, how to download CMCS software, how to configure their desktop system to use CMCS, etc. must also be developed and made available from the CMCS production website.

Configuration Management Tasks

The Configuration Manager is primarily responsible for initiating and overseeing the activities to create the products outlined in this section. The CM will likely rely on other CMCS team members by making assignments and forming task teams when necessary to help define the necessary work products outlined in this section. Once these work products have been created, software and system engineers and application scientists will be required to follow them for CMCS software development activities.

Documentation

The CM is responsible for providing documentation templates for use in software files and for providing instructions on how to create html-based documentation for programming interfaces. If Java is universally used, then tools readily exist to create this type of documentation. C and C++ have similar tools available. For other languages used in CMCS development, other means of creating this documentation will need to be identified and/or created.

The CM will be responsible for providing a web page template that has the CMCS background, logo, font settings, etc. for use by CMCS team members that develop CMCS web pages. This will make it easy for any team member to author a document that is accessed directly from the CMCS website to have a consistent appearance.

The CM is responsible for identifying where documentation will appear on the CMCS website and determining how team members can access it for authoring purposes.

The CM is responsible for identifying a task group to write user guide instructions for CMCS users.

Coding Guidelines

Coding guidelines will be developed or adopted for use by the CMCS development team. These guidelines will be used for all new software developed for CMCS. Guidelines must be adopted for all relevant languages and must be available to CMCS team members from the development site. The CM is responsible for providing these coding guidelines to the development team. The CM will help enforce coding guidelines through organizing CMCS code reviews.

Source Code Management

A plan for source code management that is acceptable for all organizations developing software for CMCS must be defined. This plan will include decisions on which tools will be used for revision control and for compiling and building libraries and executables. Documentation links for using these tools and appropriate templates (e.g. makefiles) will be provided. This plan will also include details on the structure of the software development tree, will specify whether the development tree will be distributed or located at a single institution, and will provide information on accessing third party libraries and services. The CM is responsible for organizing this task.

Test plan/procedures

The CM will establish a test plan that will be followed by the CMCS development team during testing. Test procedures, if used, should be jointly developed by the application scientists and software engineers. The test plan must have approval by the CTO and CIO to ensure adequacy and completeness.

For meaningful testing, a system test environment must be created that mirrors the CMCS deployment environment and is also independent of the CMCS development environment. This will verify the software can be properly integrated into the production environment and is not dependent upon the development environment configuration. Once testing is completed, documentation containing the software that was tested, details of the test environment, test data, test criteria, and test results must be bundled together and archived by the CM.

Environments

Development of CMCS will require separate environments for performing unit testing during development, system testing, and for actual deployment of CMCS. How this can be best accomplished with the limited amount of administrative support for CMCS will need to be addressed. Are single physical instances of the servers used for the different environments, but different logical services are provided? Or does deployment have one set of services, and development and system testing share a set of services. The CM is responsible for organizing this effort and documenting the conclusions for the CMCS development team. This document will also describe configuration details for each of these environments and how they will be maintained.

· Development environment

The CM will work with system and software engineers to establish a development environment standard for both client and server side software. This environment is used for all development and for unit testing.

· System testing environment

The CM will establish a standard environment for system testing of CMCS software. This environment must mirror the deployment environment and must be independent of the development environment. The CM will also work with users to define a test data suite to adequately test CMCS functionality.

· Deployment environment

The CM will document the CMCS deployment environment configuration and keep this up to date with each release of the CMCS software. The CM will be responsible for scheduling all upgrades to the software, hardware, and services of this environment.

Release Plan/Version Description

The CM will establish a release plan checklist to follow prior to a new release of CMCS software. The checklist must be completed prior to a CMCS software release. When a release is made, a version description of the software release will be made available that describes the new functionality added in the release, previous bugs that were fixed, known bugs in the software and any known workarounds. This version description will be made available from the CMCS production website.

References:

Software Systems Engineering Process, PNNL, http://ssep.pnl.gov/ (access protected)

Capability Maturity Model for Software, Carnegie Mellon University, http://www.sei.cmu.edu/cmm/
Institute of Electrical and Electronics Engineers, Inc. (IEEE) standards for software development and testing, http://standards.ieee.org/
JavaDoc, Sun MicroSystems, http://java.sun.com/j2se/javadoc/
CDOC, Software Blacksmiths Inc., http://www.swbs.com/
Cocoon, Stratasys Inc., http://www.stratasys.com/software/cocoon/
Appendix A - Definitions

· Activity - A major unit of work to be completed in achieving the objectives of a software project. An activity has precise starting and ending dates, entrance and exit criteria, incorporates a set of tasks to be completed, consumes resources, and results in work products. An activity may contain other activities in a hierarchical manner.

· Documentation - Any written or pictorial information describing, defining, specifying, reporting, or certifying activities or results, or providing user instructions on how to use the software.

· Entrance Criteria - A list of requirements that must be met before a phase, activity, or task can be started.

· Exit Criteria - A list of the requirements (typically a set of work products) that must be met and approved before a phase, activity, or task is considered complete.

· High-level Design - This activity is one of the primary activities of the Analysis Phase. Activities and tasks associated with high-level design include design of a system architecture, components, interfaces, timing and size estimates for components, validation of requirements, prototyping of the user interface, database design and prototyping, evaluation of "off-the-shelf" components, and design and prototyping of key algorithms of the overall system architecture. The resultant product of the high-level design is an Architecture Specification.

· Interface. 1) A shared boundary across which information is passed. 2) A hardware or software component that connects two or more other components for the purpose of passing information from one to the other. 3) To connect two or more components for the purpose of passing information from one to the other. 4) To serve as a connecting or connected component as in (2).

· Phase. A period of time within the life cycle during which specific tasks and activities are accomplished. Each phase has well-established entrance and exit criteria.

· Plan - A management document describing the approach that will be taken for a particular task. The plan may describe the work to be done, the resources required, the methods to be used, the schedules to be met, and the task organization.

· Policy - A guiding principle, typically established by senior management, which is adopted by an organization or project to influence and determine decisions.

· Requirements Specification - A document of the essential requirements (functions, performance, design constraints, and attributes) of the software and/or hardware and their external interfaces.

· Software Process - A set of activities, methods, practices, and transformations that people use to develop and maintain software and the associated products (e.g., project plans, design documents, code, test cases, and user manuals).

· Specification - A document that prescribes, in a complete, precise, verifiable manner, the requirements, design, behavior, or other characteristics of a component or system and often, the procedures for determining whether these provisions have been satisfied.

· Standards - An agreed upon approach to describing, defining, specifying, reporting, or developing products.

· Stepwise Refinement - A software development technique in which data and processing steps are defined broadly at first and then further defined with increasing detail.

· System Architecture - The underlying structure of a system defined as a set of components and their interaction.

· Task - The smallest unit of work subject to management accountability. A task is a well-defined work assignment for one or more project members. Tasks have entrance criteria (preconditions) and exit criteria (post-conditions). Related tasks are usually grouped to form activities.

· Test Plan - A document describing the scope, approach, resources, and schedule of intended test activities. It identifies test items, the features to be tested, the testing tasks, who will do each task, the methodology for evaluating and documenting and reporting test results, and any risks requiring contingency planning.

· Test Procedure - Detailed instructions for the setup, execution, and evaluation of results for a given test. Execution of a test procedure will require predicted results and the use of specific test data values or conditions.

· Work Product - Any tangible item that results from a project function, activity, or task.

_1065874670.vsd
Requirements Specifications
Prototypes�

Example Design Work:
Modeling
Component Design
User Interface Design
Protocols and Messaging
System Specifications�

Design Document:
Component Descriptions
Technology Dependencies
Data Models�

_1066040364.vsd
Unit-tested Software
Test Plan and Procedures
Testing Environment�

System Testing�

Deployment ready software
Software Problem Reports�

_1066045075.vsd
Requirements Gathering and Analysis�

Design�

Development�

Testing�

Deployment�

_1074006915.vsd
System-tested Software
Deployment Plan
Deployment Environment�

Software Installation
Software Distribution�

Deployment ready software
Software Problem Reports�

_1066034209.vsd
Design Specifications
Development Plan
Development Environment�

Schedules
Software Development�

Test ready software
Inline documentation
interface descriptions
Unit test software�

_1065874616.vsd
User Needs
User Expectations
User/System Interactions
Dependencies
Limiting Factors�

Ways to collect and analyze:
Use Cases
Process Flows
Data Definitions
Prototypes
Technology Assessements
Interviews�

Requirements Specification:
Functional Requirements
Data Requirements
Interface Requirements Between Functions�

